Photovoltaik

Photovoltaik

Wir möchten Sie gerne mit auf unsere spannenden Abenteuerreise zu finanzieller Freiheit nehmen.

Wir versuchen, unseren Traum zu leben, um finanziell unabhängig zu werden.

Wir freuen uns darauf, unsere Geschäftsideen mit Ihnen zu entwickeln.

Hier anmelden, um direkt über neue Inhalte informiert zu werden.

Photovoltaik

Unter Photovoltaik bzw. Fotovoltaik versteht man die direkte Umwandlung von Lichtenergie, meist aus Sonnenlicht, mittels Solarzellen in elektrische Energie. Seit 1958 wird sie in der Raumfahrt genutzt, später diente sie auch zur Energieversorgung einzelner elektrischer Geräte wie Taschenrechnern oder Parkscheinautomaten. Heute ist mit großem Abstand die netzgebundene Stromerzeugung auf Dachflächen und als Freiflächenanlage das wichtigste Anwendungsgebiet, um konventionelle Kraftwerke zu ersetzen.

Der Begriff leitet sich aus dem griechischen Wort für „Licht“ (φῶς, phos, im Genitiv: φωτός, photos) sowie aus der Einheit für die elektrische Spannung, dem Volt (nach Alessandro Volta) ab. Die Photovoltaik ist ein Teilbereich der Solartechnik, die weitere technische Nutzungen der Sonnenenergie einschließt.

Ende 2018 waren weltweit Photovoltaikanlagen mit einer Leistung von mehr als 500 GW installiert.[1] Zwischen 1998 und 2015 stieg die weltweit installierte Photovoltaik-Leistung mit einer Wachstumsrate von durchschnittlich 38 % pro Jahr.[2] Nach einer 2019 erschienenen Arbeit in Science wird erwartet, dass die installierte Leistung bis 2030 ca. 10.000 GW erreicht und 2050 bei 30.000 bis 70.000 GW liegen könnte.[1] 2014 betrug der weltweite Marktanteil von kristallinen Siliziumzellen etwa 90 %. Prognosen gehen davon aus, dass Siliziumzellen auch langfristig die dominierende Photovoltaik-Technologie bleiben und gemeinsam mit Windkraftanlagen die „Arbeitspferde“ der Energiewende sein werden.[3]

Die Photovoltaik galt lange als die teuerste Form der Stromerzeugung mittels erneuerbaren Energien; eine Sicht, die mittlerweile durch die starken Kostensenkungen der Anlagenkomponenten jedoch überholt ist.[4] Von 2011 bis 2017 sind die Kosten der Stromerzeugung aus Photovoltaik um fast 75 % gefallen. In den USA sind bei Solarparks Vergütungen von unter 5 US-Cent/kWh (4,2 Euro-Cent/kWh) üblich (Stand 2017); ähnliche Werte waren zu diesem Zeitpunkt unter günstigen Umständen auch in anderen Staaten möglich. In mehreren Staaten wurden in Ausschreibungen Rekordwerte von 3 US-Cent/kWh (2,5 Euro-Cent/kWh) erreicht.[5] 2020 wurden mehrere Solarparks vergeben, bei denen die Vergütung deutlich unter 2 US-Cent/kWh liegt. Das mit Stand April 2020 günstigste bezuschlagte Angebot liegt bei 1,35 US-Cent/kWh (1,13 ct/kWh) für einen Solarpark in Abu Dhabi.[6] Auch in Deutschland liegen die Stromgestehungskosten von neu errichteten Photovoltaik-Großanlagen seit 2018 niedriger als bei allen anderen fossilen oder erneuerbaren Energien.[7]

Schreibweise

Üblicherweise wird die Schreibung Photovoltaik und die Abkürzung PV angewendet. Seit der deutschen Rechtschreibreform ist die Schreibweise Fotovoltaik die neue Hauptform und Photovoltaik eine weiterhin zulässige alternative Schreibung. Im deutschen Sprachraum ist die alternative Schreibweise Photovoltaik die gebräuchliche Variante. Auch im internationalen Sprachgebrauch ist die Schreibweise PV üblich.[12] Für technische Fachgebiete ist die Schreibweise in der Normung (hier ebenfalls Photovoltaik) ein wesentliches Kriterium für die anzuwendende Schreibweise.

Technische Grundlagen

Zur Energiewandlung wird der photoelektrische Effekt von Solarzellen genutzt, die ihrerseits wiederum zu so genannten Solarmodulen verbunden werden. Die erzeugte Elektrizität kann direkt genutzt, in Stromnetze eingespeist oder in Akkumulatoren gespeichert werden. Vor der Einspeisung in WechselspannungsStromnetze wird die erzeugte Gleichspannung von einem Wechselrichter umgewandelt. Das System aus Solarmodulen und den anderen Bauteilen (Wechselrichter, Stromleitung) wird als Photovoltaikanlage bezeichnet.

Funktionsprinzip

Photovoltaik-Funktionsprinzip am Beispiel einer Silizium-Solarzelle (Erläuterungen zu den Ziffern s. Text)

Photovoltaik-Funktionsprinzip am Beispiel einer Silizium-Solarzelle.[13] Silizium ist ein Halbleiter. Die Besonderheit von Halbleitern ist, dass durch zugeführte Energie (z. B. in Form von Licht bzw. elektromagnetischer Strahlung) in ihnen freie Ladungsträger erzeugt werden können.[14]

  1. Die obere Siliziumschicht ist mit Elektronendonatoren (Elektronenspendern – z. B. Phosphoratomen) durchsetzt – negativ dotiert. Hier gibt es zu viele Elektronen (n-Schicht).
  2. Die untere Siliziumschicht ist mit Elektronenakzeptoren (Elektronenempfänger – z. B. Boratomen) durchsetzt – positiv dotiert. Hier gibt es zu wenige Elektronen, also zu viele Fehlstellen oder Löcher (p-Schicht).
  3. Im Grenzbereich der beiden Schichten binden sich die überschüssigen Elektronen der Elektronenspender locker an die Fehlstellen der Elektronen-Akzeptoren (sie besetzen die Fehlstellen im Valenzband) und bilden eine neutrale Zone (p-n-Übergang).
  4. Da nun oben Elektronen- und unten Fehlstellenmangel herrscht, bildet sich zwischen der oberen und unteren Kontaktfläche ein ständig vorhandenes elektrisches Feld.
  5. Photonen (Lichtquanten, „Sonnenstrahlen“) gelangen in die Übergangsschicht.
  6. Photonen mit ausreichender Energiemenge übertragen in der neutralen Zone ihre Energie an die locker gebundenen Elektronen im Valenzband der Elektronen-Akzeptoren. Das löst diese Elektronen aus ihrer Bindung und hebt sie ins Leitungsband. Viele dieser freien Ladungsträger (Elektron-Loch-Paare) verschwinden nach kurzer Zeit durch Rekombination wieder. Einige Ladungsträger driften – bewegt vom elektrischen Feld – zu den Kontakten in die gleichartig dotierten Zonen (s. o.); d. h. die Elektronen werden von den Löchern getrennt, die Elektronen driften nach oben, die Löcher nach unten. Eine Spannung und ein nutzbarer Strom entstehen, solange weitere Photonen ständig freie Ladungsträger erzeugen.
  7. Der „Elektronen“-Strom fließt durch den „äußeren Stromkreis“ zur unteren Kontaktfläche der Zelle und rekombiniert dort mit den zurückgelassenen Löchern.

Nennleistung und Ertrag

Strahlungsatlas aufgrund von Satellitendaten aus den Jahren 1991–1993

Solarstrahlungspotenzial in Europa

Die Nennleistung von Photovoltaikanlagen wird häufig in der Schreibweise Wp (Watt Peak) oder kWp angegeben und bezieht sich auf die Leistung bei Testbedingungen, die in etwa der maximalen Sonnenstrahlung in Deutschland entsprechen. Die Testbedingungen dienen zur Normierung und zum Vergleich verschiedener Solarmodule. Die elektrischen Werte der Bauteile werden in Datenblättern angegeben. Es wird bei 25 °C Modultemperatur, 1000 W/m² Bestrahlungsstärke und einer Luftmasse (abgekürzt AM von englisch air mass) von 1,5 gemessen. Diese Standard-Testbedingungen (meist abgekürzt STC von englisch standard test conditions) wurden als internationaler Standard festgelegt. Können diese Bedingungen beim Testen nicht eingehalten werden, so muss aus den gegebenen Testbedingungen die Nennleistung rechnerisch ermittelt werden.

Ausschlaggebend für die Dimensionierung und die Amortisation einer Photovoltaikanlage ist neben der Spitzenleistung vor allem der Jahresertrag, also die Menge der gewonnenen elektrischen Energie. Die Strahlungsenergie schwankt tages-, jahreszeitlich und wetterbedingt. So kann eine Solaranlage in Deutschland im Juli gegenüber dem Dezember einen bis zu zehnmal höheren Ertrag aufweisen. Tagesaktuelle Einspeisedaten mit hoher zeitlicher Auflösung sind für die Jahre ab 2011 im Internet frei zugänglich.[15]

Der Ertrag pro Jahr wird in Wattstunden (Wh) oder Kilowattstunden (kWh) gemessen. Standort und Ausrichtung der Module sowie Verschattungen haben wesentlichen Einfluss auf den Ertrag, wobei in Mitteleuropa Dachneigungen von 30 – 40° und Ausrichtung nach Süden den höchsten Ertrag liefern.[16] An der maximalen Sonnenhöhe (Mittagssonne) orientiert, sollte in Deutschland bei einer Festinstallation (ohne Nachführung) die optimale Neigung im Süden des Landes ca. 32°, im Norden ca. 37° betragen.[17] Praktisch empfiehlt sich ein etwas höherer Neigungswinkel, da dann sowohl zweimal am Tag (am Vormittag und am Nachmittag) als auch zweimal im Jahr (im Mai und im Juli) die Anlage optimal ausgerichtet ist. Bei Freiflächenanlagen werden deshalb in aller Regel derartige Ausrichtungen gewählt. Zwar lässt sich die über das Jahr verteilte, durchschnittliche Sonnenhöhe und damit die theoretisch optimale Neigung für jeden Breitengrad exakt berechnen,[18] jedoch ist entlang eines Breitengrades die tatsächliche Einstrahlung durch verschiedene, meist geländeabhängige Faktoren unterschiedlich (z. B. Verschattung oder besondere lokale Wetterlagen). Da auch die anlagenabhängige Effektivität bezüglich des Einstrahlungswinkels unterschiedlich ist, muss die optimale Ausrichtung im Einzelfall standort- und anlagenbezogen ermittelt werden. Bei diesen energetischen Untersuchungen wird die standortbezogene Globalstrahlung ermittelt, welche neben der direkten Sonneneinstrahlung auch die über Streuung (z. B. Wolken) oder Reflexion (z. B. in der Nähe befindliche Hauswände oder den Erdboden) einfallende Diffusstrahlung umfasst.

Der spezifische Ertrag ist als Wattstunden pro installierter Nennleistung (Wh/Wp bzw. kWh/kWp) pro Zeitabschnitt definiert und erlaubt den einfachen Vergleich von Anlagen unterschiedlicher Größe. In Deutschland kann man bei einer einigermaßen optimal ausgerichteten fest installierten Anlage pro Modulfläche mit 1 kWp mit einem Jahresertrag von ca. 1.000 kWh rechnen, wobei die Werte zwischen etwa 900 kWh in Norddeutschland und 1150 kWh in Süddeutschland schwanken.[19]

Montagesysteme

Aufdach- / Indach-Montage

Hausdach mit Photovoltaikanlage zur Strom- und Sonnenkollektor für Warmwassererzeugung

Bei den Montagesystemen wird zwischen Aufdach-Systemen und Indach-Systemen unterschieden. Bei einem Aufdach-System für geneigte Hausdächer wird die Photovoltaik-Anlage mit Hilfe eines Montagegestells auf dem Dach befestigt. Diese Art der Montage wird am häufigsten gewählt, da sie für bestehende Dächer am einfachsten umsetzbar ist.

Bei einem Indach-System ist eine Photovoltaik-Anlage in die Dachhaut integriert und übernimmt deren Funktionen wie Dachdichtigkeit und Wetterschutz mit. Vorteilhaft bei solchen Systemen sind die optisch attraktivere Erscheinung sowie die Einsparung einer Dachdeckung, sodass der höhere Montageaufwand oftmals kompensiert werden kann.[20]

Die Aufdach-Montage eignet sich neben Ziegeldächern auch für Blechdächer, Schieferdächer oder Wellplatten. Ist die Dachneigung zu flach, können spezielle Haken diese bis zu einem gewissen Grad ausgleichen. Die Installation eines Aufdach-Systems ist in der Regel einfacher und preisgünstiger als die eines Indach-Systems. Ein Aufdach-System sorgt zudem für eine ausreichende Hinterlüftung der Solarmodule. Die Befestigungsmaterialien müssen witterungsbeständig sein.[21]

Eine weitere Form ist die Flachdachmontage. Da Flachdächer gar nicht oder nur leicht geneigt sind, werden durch das Montagesystem die Module zwischen 6 und 13° angewinkelt. Häufig wird auch eine Ost-West-Neigung genutzt, um eine höhere Flächenausnutzung zu erreichen. Um die Dachhaut nicht zu beschädigen, wird bei ausreichender Traglast das Montagesystem durch Ballastierung befestigt.[22]

Das Indach-System eignet sich bei Dachsanierungen und Neubauten, ist jedoch nicht bei allen Dächern möglich. Ziegeldächer erlauben die Indach-Montage, Blechdächer oder Bitumen­dächer nicht. Auch die Form des Dachs ist maßgebend. Die Indach-Montage ist nur für ausreichend große Schrägdächer mit günstiger Ausrichtung zur Sonnenbahn geeignet. Generell setzen Indach-Systeme größere Neigungswinkel voraus als Aufdach-Systeme, um einen ausreichenden Regenwasserabfluss zu ermöglichen. Indach-Systeme bilden mit der übrigen Dacheindeckung eine geschlossene Oberfläche und sind daher aus ästhetischer Sicht attraktiver. Zudem weist ein Indach-System eine höhere mechanische Stabilität gegenüber Schnee- und Windlasten auf. Die Kühlung der Module ist jedoch weniger effizient als beim Aufdach-System, was die Leistung und den Ertrag etwas verkleinert. Eine um 1 °C höhere Temperatur reduziert die Modulleistung um ca. 0,5 %.[23]

Freiflächen-Montage

Bei den Montagesystemen für Freiflächen-Anlagen wird zwischen Festaufständerung und Trackingsystemen unterschieden. Bei der Festaufständerung wird abhängig vom Untergrund ein Stahl- oder Aluminiumgestell durch Rammung im Boden verankert oder auf Betonblöcken verschraubt; der Winkel der Module wird nach der Montage nicht mehr verändert.

Trackingsysteme folgen dem Sonnenverlauf, um immer eine optimale Ausrichtung der Module zu gewährleisten. Dadurch erhöht sich die Ausbeute, aber es erhöhen sich auch die Investitionskosten sowie die Betriebskosten für Wartung und die benötige Energie für die Nachführung. Es wird unterschieden zwischen einachsiger Nachführung – entweder nur horizontal (Das Panel folgt dem Sonnenstand vom Sonnenaufgang bis zum -untergang von Ost nach West.) oder nur vertikal (Das nach Süden ausgerichtete Panel dreht sich je nach Höhe der Sonne über dem Horizont.) und der zweiachsigen Nachführung – horizontal und vertikal. Dadurch erhöhen sich die Erträge gegenüber der Festaufständerung: in mitteleuropäischen Breitengraden bei nur einachsiger Nachführung um ungefähr 20 % und bei zweiachsiger Nachführung um über 30 %.[24]

Eine weitere Form der Freiflächen-Montage ist die schwimmende Montage auf Gewässern, wobei die Module auf Kunststoff-Schwimmkörpern montiert werden. Durch den kühlenden Effekt des Wassers steigt die Ausbeute allerdings. Die Investitionskosten sind 20–25 % höher als bei herkömmlicher Montage.[25] Das Fraunhofer-Institut schätzt das Potenzial für schwimmende PV-Anlagen alleine auf 25 % der durch Braunkohleabbau zerstörten Flächen auf 55 GWp, wenn diese geflutet werden.[26]

In Baden-Württemberg wurde 2020 eine Anlage mit senkrechter Aufstellung der Module in Betrieb genommen.[27]

Wirkungsgrad

Thermografie an einer Photovoltaik-Anlage / Nachweis fehlerhafte Zelle

Der Wirkungsgrad ist das Verhältnis zwischen momentan erzeugter elektrischer Leistung und eingestrahlter Lichtleistung. Je höher er ist, desto geringer kann die Fläche für die Anlage gehalten werden. Beim Wirkungsgrad ist zu beachten, welches System betrachtet wird (einzelne Solarzelle, Solarpanel bzw. -modul, die gesamte Anlage mit Wechselrichter bzw. Laderegler und Akkus und Verkabelung). Der Ertrag von Solarmodulen ist zudem auch temperaturabhängig. So ändert sich die Leistung eines monokristallinen Siliziummoduls um −0,4 % pro °C, bei einer Temperaturerhöhung von 25 °C nimmt die Leistung somit um ca. 10 % ab.[54] Eine Kombination von Solarzellen und thermischem Sonnenkollektor, sogenannte Hybridkollektoren, steigert den Gesamtwirkungsgrad durch die zusätzliche thermische Nutzung, und kann den elektrischen Wirkungsgrad aufgrund der Kühlung der Solarzellen durch die thermischen Kollektoren verbessern.[55]

ZellmaterialMaximaler Zellwirkungsgrad im LaborMaximaler Wirkungsgrad (Serienproduktion)Typischer ModulwirkungsgradFlächenbedarf pro kWp
Monokristallines Silizium25,8 %24 %19 %5,3 m²
polykristallines Silizium22,3 %20 %17 %5,9 m²
Amorphes Silizium14,0 %8 %6 %16,7 m²
CIS/CIGS22,6 %16 %15 %6,7 m²
CdTe22,1 %17 %16 %6,3 m²
Konzentrator­zelleA146,0 %40 %30 %3,3 m²

Performance Ratio

Die Performance Ratio (PR) – häufig auch Qualitätsfaktor (Q) genannt – ist der Quotient aus dem tatsächlichen Nutzertrag einer Anlage und ihrem Sollertrag.[59] Der „Sollertrag“ berechnet sich aus der eingestrahlten Energie auf die Modulfläche und dem nominalen Modul-Wirkungsgrad; er bezeichnet also die Energiemenge, die die Anlage bei Betrieb unter Standard-Testbedingungen (STC) und bei 100 % Wechselrichter-Wirkungsgrad ernten würde.

Real liegt der Modulwirkungsgrad auch bei unverschatteten Anlagen durch Erwärmung, niedrigere Einstrahlung etc. gegenüber den STC unter dem nominalen Wirkungsgrad; außerdem gehen vom Sollertrag noch die Leitungs- und Wechselrichterverluste ab. Der Sollertrag ist somit eine theoretische Rechengröße unter STC. Die Performance ratio ist immer ein Jahresdurchschnittswert. Beispielsweise liegt die PR an kalten Tagen über dem Durchschnitt und sinkt vor allem bei höheren Temperaturen sowie morgens und abends, wenn die Sonne in einem spitzeren Winkel auf die Module scheint.

Die Performance Ratio stieg mit der Entwicklung der Photovoltaik-Technik deutlich an: Von 50–75 % in den späten 1980er Jahren über 70–80 % in den 1990er Jahren auf mehr als 80 % um ca. 2010. Für Deutschland wurden ein Median von 84 % im Jahr 2010 ermittelt, Werte von über 90 % werden in der Zukunft für möglich gehalten.[59] Quaschning gibt mit durchschnittlich 75 % niedrigere Werte an. Demnach können gute Anlagen Werte von über 80 % erreichen, bei sehr schlechten Anlagen sind jedoch auch Werte unter 60 % möglich, wobei dann häufig Wechselrichterausfälle oder längerfristige Abschattungen die Ursache sind.[60]

Verschmutzung und Reinigung

Wie auf jeder Oberfläche im Freien (vergleichbar mit Fenstern, Wänden, Dächern, Auto usw.) können sich auch auf Photovoltaikanlagen unterschiedliche Stoffe absetzen. Dazu gehören beispielsweise Blätter und Nadeln, klebrige organische Sekrete von Läusen, Pollen und Samen, Ruß aus Heizungen und Motoren, Sand, Staub (z. B. auch Futtermittelstäube aus der Landwirtschaft), Wachstum von Pionierpflanzen wie Flechten, Algen und Moosen sowie Vogelkot.

Bei Anlagen mit Neigungswinkel um 30° ist die Verschmutzung gering; hier liegen die Verluste bei ca. 2–3 %. Stärker wirkt sich Verschmutzung hingegen bei flachen Anstellwinkeln aus, wo Verschmutzungen bis zu 10 % Verluste verursachen können. Bei Anlagen auf Tierställen von landwirtschaftlichen Betrieben sind auch höhere Verluste möglich, wenn Schmutz aus Lüftungsschächten auf der Anlage abgelagert wird. In diesen Fällen ist eine Reinigung in regelmäßigen Abständen sinnvoll.[61]

Stand der Technik zur Reinigung ist die Verwendung von vollentsalztem Wasser (Demineralisiertes Wasser), um Kalkflecken zu vermeiden. Als weiteres Hilfsmittel kommen bei der Reinigung wasserführende Teleskopstangen zum Einsatz. Die Reinigung sollte durchgeführt werden, ohne Kratzer an der Moduloberfläche zu verursachen. Zudem sollten Module überhaupt nicht und Dächer nur mit geeigneten Sicherheitsvorkehrungen betreten werden.

Auch mit einer Wärmebildkamera kann man die Verschmutzung feststellen. Verschmutzte Stellen auf den Modulen sind bei Sonneneinstrahlung wärmer als saubere Stellen.

Wirtschaftlichkeit

Anschaffungskosten und Amortisationszeit

Die Anschaffungskosten einer PV-Anlage bestehen aus Materialkosten wie Modulen, Wechselrichter, Montagesystem und Komponenten für die Verdrahtung und den Netzanschluss. Zusätzlich entstehen Kosten für die Montage und Netzanschluss. Den größten Anteil an den Kosten haben mit 40–50 % die Module. Abhängig von der Größe der PV-Anlage kann der Netzanschluss einen großen Teil der Investitionssumme ausmachen.[68] Bei kleinen Dachanlagen bis 30 KWp ist der Netzanschluss des Hauses gesetzlich vorgesehen[67], bei höheren Leistungen kann um das Niederspannungsnetz nicht zu überlasten in das Mittelspannungsnetz eingespeist werden, welches zusätzlich Kosten für das Verlegen der Kabel und einen Transformator oder Spezielle Wechselrichter am Netzanschluss verursacht.

Die Anlagenkosten unterscheiden sich abhängig von der Montage-Art und Menge der Installierten Leistung (Stand 2018).

  • PV Dach Kleinanlagen (5 – 15 kWp): 1200 – 1400 €/KWp
  • PV Dach Großanlagen (100 – 1000 kWp): 800 – 1000 €/KWp
  • PV Freifläche (ab 2 MWp): 600 – 800 €/KWp[68]

Dieser Preis enthält neben den Modulen auch Wechselrichter, Montage und Netzanschluss.

Eine in Deutschland installierte Anlage liefert je nach Lage und Ausrichtung einen Jahresertrag von etwa 700 bis 1100 kWh und benötigt bei Dachinstallation 6,5 bis 7,5 m² Fläche pro kWp Leistung.

Die Amortisation ist von vielen Faktoren abhängig: vom Zeitpunkt der Inbetriebnahme, der Sonneneinstrahlung, der Modulfläche, Ausrichtung und Neigung der Anlage sowie dem Anteil der Fremdfinanzierung. Die langjährige und zuverlässige Förderung durch die Einspeisevergütungen des deutschen EEGs war ein entscheidender Faktor für die starken Kostensenkungen der Photovoltaik.[75]

Stromgestehungskosten

Photovoltaik galt lange als die teuerste Form der Stromerzeugung mittels erneuerbaren Energien. Durch den starken Preisrückgang hat sich dies mittlerweile geändert, sodass Photovoltaik inzwischen konkurrenzfähig zu anderen regenerativen und konventionellen Arten der Stromerzeugung ist. In manchen Teilen der Welt werden PV-Anlagen mittlerweile ganz ohne Förderung installiert.[4] Die konkreten Stromgestehungskosten sind abhängig von den jeweiligen Verhältnissen. In den USA sind z. B. Vergütungen von unter 5 US-Cent/kWh (4,2 Euro-Cent/kWh) üblich. Ähnliche Werte werden auch für andere Staaten wirtschaftlich darstellbar gehalten, wenn die Strahlungs- und Finanzierungsbedingungen günstig sind. Bei den mit Stand 2017 günstigsten Solarprojekten wurden in Ausschreibungen Stromgestehungskosten von 3 US-Cent/kWh (2,5 Euro-Cent/kWh) erreicht[5] bzw. diese Werte selbst ohne Subventionen noch leicht unterboten.[2]

Durch die Massenproduktion sinken die Preise der Solarmodule, seit 1980 fielen die Modulkosten um 10 % pro Jahr; ein Trend, dessen weitere Fortsetzung wahrscheinlich ist.[78] Mit Stand 2017 sind die Kosten der Stromerzeugung aus Photovoltaik binnen 7 Jahren um fast 75 % gefallen.[5] Nach Swansons Law fällt der Preis der Solarmodule mit der Verdopplung der Leistung um 20 %.[79][80]

Die Modulpreise sind in den letzten Jahren stark gesunken, getrieben durch Skaleneffekte, technologische Entwicklungen, Normalisierung des Solarsiliziumpreises und durch den Aufbau von Überkapazitäten und Konkurrenzdruck bei den Herstellern.

2018 lagen die Modulpreise im globalen Schnitt bereits unter 0,25 $/Watt.[1] Historisch betrachtet fielen die Modulpreise über die vergangenen 40 Jahre um 22,5 % pro Verdopplung der installierten Leistung.[2]

Die weitere Preisentwicklung hängt von der Entwicklung der Nachfrage sowie von den technischen Entwicklungen ab.

Weitere Entwicklung

Insgesamt wächst der Photovoltaikmarkt immer noch stark (um ca. 40 % jährlich). Prognosen der Stromgestehungskosten in Deutschland kommen für das Jahr 2035 auf Werte für PV-Dach-Kleinanlagen (5 – 15 kWp) zwischen 4,20 – 6,72 Cent/kWh. Bei Freiflächenanlagen werden Werte von 2,16 – 3,94 Cent/kWh angenommen. Die Anlagen-Preise pro installiertes Kilowatt sinken bei Freiflächenanlagen unter 400 €/kWp und bei Kleinanlagen zwischen 700 – 815 €/kWp.[68]

An Standorten mit hoher Solarstrahlung über 1450 Wh/(m²·a) könnten die Stromgestehungskosten für Freiflächenanlagen im Jahr 2035 unter 2 Cent/kWh fallen.

Förderprogramme

In Deutschland gibt es eine gesetzlich geregelte und über 20 Jahre gewährte Einspeisevergütung; die Höhe ist im Erneuerbare-Energien-Gesetz geregelt. Die Einspeisevergütung ist degressiv gestaltet, fällt also für neue Anlagen pro Jahr um einen gewissen Prozentsatz. Zudem gibt es zwölf weitere Programme, die die Anschaffung einer Photovoltaikanlage fördern sollen.

Auf Bundesebene kann die sogenannte Investitionszulage für Photovoltaikanlagen im produzierenden Gewerbe und im Bereich der produktionsnahen Dienstleistungen in Form von Steuergutschriften genehmigt werden.

Daneben stellt die KfW-Förderbank folgende Programme zur Verfügung:

  • KfW – erneuerbare Energien – Standard
  • KfW – Kommunalkredit
  • BMU – Demonstrationsprogramm
  • KfW – kommunal investieren.

Die Fördergelder der KfW-Förderbank werden im Gegensatz zur Investitionszulage ausschließlich als Darlehen genehmigt und über die jeweilige Hausbank zur Verfügung gestellt.

Des Weiteren haben folgende Bundesländer eigene Solarfördergesetze erlassen:

  • Bayern – rationelle Energiegewinnung und -verwendung im Gewerbe – (Zuschuss)
  • Niedersachsen – Innovationsförderprogramm (Gewerbe) – (Darlehen / in Ausnahmen Zuschuss)
  • Nordrhein-Westfalen – progres.nrw „Rationelle Energieverwendung, Regenerative Energien und Energiesparen“ – (Zuschuss)
  • Rheinland-Pfalz – energieeffiziente Neubauten – (Zuschuss)
  • Saarland – Zukunftsenergieprogramm Technik (ZEP-Tech) 2007 (Demonstrations-/Pilotvorhaben) – (Zuschuss).

Weitere Fördermittel und Zuschüsse werden auch von zahlreichen Städten und Kommunen, lokalen Klimaschutzfonds sowie einigen privaten Anbietern angeboten.[112] Diese können teilweise mit anderen Förderprogrammen kombiniert werden.

Ein lokales Förderprogramm bietet die oberbayerische Stadt Burghausen mit 50 € je 100 Wp installierte Leistung bis max. 1.000 € pro Anlage und Wohngebäude.[113]

Steuerliche Behandlung

Bei einem Jahresumsatz bis 17.500 € gilt die Kleinunternehmerregelung nach § 19 UStG. Als Kleinunternehmer muss man keine Steuererklärung abgeben, darf dem Abnehmer aber auch keine Umsatzsteuer in Rechnung stellen. Ein umsatzsteuerpflichtiger Unternehmer (Kleinunternehmer können zur Steuerpflicht optieren) bekommt die Vorsteuer auf alle Investitionen erstattet, muss aber zusätzlich zur Einspeisevergütung dem Abnehmer die Umsatzsteuer in Rechnung stellen und an das Finanzamt abführen.

Für die Einkünfte aus der Photovoltaikanlage gilt § 15 EStG. Ein eventueller Verlust mindert die Steuerlast, wenn hierbei keine Liebhaberei vorliegt. Es wäre eine Liebhaberei, wenn sich anhand der auf die Betriebsdauer der Anlage gerichteten Berechnung von vornherein ergeben hat, dass der Betrieb der Anlage keinen Gewinn erwirtschaftet. Soweit einschlägige Renditeberechnungsprogramme einen Steuervorteil berücksichtigen, muss diese Problematik berücksichtigt werden.

Da es für die Gewerbesteuer einen Freibetrag von 24.500 € für natürliche Personen und Personengesellschaften gibt (§ 11 Abs. 1 Nr. 1 GewStG), fallen meist nur große Anlagen unter die Gewerbesteuer.

Quelle: Seite „Photovoltaik“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 24. Februar 2021, 17:28 UTC. URL: https://de.wikipedia.org/w/index.php?title=Photovoltaik&oldid=209167696 (Abgerufen: 18. März 2021, 20:06 UTC)

Photovoltaik in Deutschland

Die Photovoltaik in Deutschland hat ein zunehmend größeres Gewicht bei der Energieerzeugung. Im Jahr 2019 betrug der Anteil des Solarstroms am Brutto-Stromverbrauch in Deutschland 46,5 TWh, entsprechend 8,2 %.[1] Der Ausbau der Solarstromerzeugung durch Photovoltaik wird in Deutschland durch das Erneuerbare-Energien-Gesetz staatlich gefördert. Mit Stand 2019 werden erste Projekte wie der Solarpark Weesow-Willmersdorf auch gänzlich ohne Förderung gebaut.

Entwicklung, Zubau und tatsächliche Einspeisung in Deutschland

Von 2000 bis 2011 stieg die mit Photovoltaik erzeugte Energie von 0,064 TWh auf ca. 19 TWh[2] und damit auf das rund Dreihundertfache. 2012 betrug der Zubau 8.300 MW (= 8,3 GW), womit eine neue Rekordmarke aufgestellt wurde. Zahlreiche Investoren beschleunigten ihre Projekte, weil sie Kürzungen der Bundesregierung befürchteten bzw. weil sie sich die höheren Vergütungssätze sichern wollten. Ab 2013 war der Photovoltaik-Zubau stark rückläufig.[3] 2014 wurden nur noch 1,9 GW installiert, was unterhalb des von der Bundesregierung vorgegebenen Ausbaukorridors von 2,5 GW liegt.[4]

2019 produzierten PV-Anlagen in Deutschland 46,5 TWh elektrischer Energie.[1] Die Solarenergie trägt in Deutschland bereits seit 2015 in der Mittagszeit von sonnenreichen Frühlings- und Sommertagen mehr als die Hälfte zur Deckung der Verbrauchsspitzen bei, in Bayern und Baden-Württemberg sogar zwei Drittel.[10]

Die rechnerischen Volllaststunden in der folgenden Tabelle zeigen, wie die Nutzung der Sonnenenergie witterungsbedingt schwanken kann, und stehen in engem Zusammenhang mit der Sonnenscheindauer, d. h. mit der Zahl der Sonnenstunden eines Jahres. Die mittlere Sonnenscheindauer beträgt in Deutschland 1550 Stunden pro Jahr. Die Volllaststunden entsprechen nicht der Einschaltdauer, sondern einem rechnerischen Wert, der sich aus dem Quotient zwischen Regelarbeitsvermögen und Peak-Leistung der Photovoltaikanlage ergibt. Die tatsächliche Einschaltdauer, in der die Anlage Strom erzeugt, entspricht den Zeiten, in denen die Sonne über dem Horizont steht, also näherungsweise etwa der Hälfte der Jahresstunden, somit rund 4400 Stunden, wobei die Stromproduktion allerdings teilweise nur gering ist – bei schlechtem Wetter, in den ersten Stunden nach Sonnenaufgang und in den letzten Stunden vor Sonnenuntergang. Pro kWpeak installierter Leistung kann im Jahr je nach den Wetterverhältnissen und nach Lage und Ausrichtung ein Energieertrag von etwa 600 bis 1200 kWh erwartet werden.

Jahr20002001200220032004200520062007200820092010201120122013201420152016201720182019
Globalstrahlung in Deutschland in Watt/m²119121119139123125127125124126123126125119123127123123138131
Erzeugung in TWh/Jahr0,060,080,160,310,561,282,223,084,426,5811,7319,6026,3831,0136,0638,7338,1039,4045,7846,39
installierte Leistung in GWpeak0,110,180,300,441,112,062,904,176,1210,5718,0125,9234,0836,7137,9039,2240,6842,2945,1849,02
Zubau in GWpeak0,040,060,120,140,670,950,841,271,954,457,447,918,162,631,191,321,451,612,893,84

Entsprechend der Sonnenstrahlungsintensität erreicht die Photovoltaik in der Mittagszeit ihre Leistungsspitze (“Peak”), in den Morgen- und Abendstunden ist die eingespeiste Strommenge deutlich geringer. In Deutschland wird der meiste Strom zwischen 8.00 Uhr morgens und 19.00 Uhr abends benötigt. Durch die natürliche Übereinstimmung des Lastprofils des Stromverbrauchs mit der zeitlichen Verteilung der Photovoltaikeinspeisung verringert sich die Notwendigkeit, Spitzenlastkraftwerke anzufahren. Problematisch für die Stromversorgung ist es allerdings, dass in den Herbst- und Wintermonaten, in denen für Heizung und Beleuchtung besonders viel Strom benötigt wird, der Stromertrag der PV-Anlagen am geringsten ist (Lt. den Energy Charts des Fraunhofer ISE wurden in den Jahren 2012–2020 jeweils in den Monaten Januar, November und Dezember insges. 5,66 – 7,20 % des Jahresertrags erzielt).

Im Internet finden sich auf der EEX-Transparenzplattform die tagesaktuelle Berechnung des Leistungsprofils und die Produktionsdaten für elektrische Energie für Deutschland und Österreich aufgeschlüsselt nach Erzeugungsart und Regelzonen. Für Deutschland werden die gemessenen Photovoltaikdaten aus den vier Regelzonen gemeldet und sind seit dem Beginn der Meldungen am 19. Juli 2010 auch abzurufen.[13] Tagesaktuelle Einspeisedaten (für Deutschland) sind für die Jahre ab 2011 via Energy-Charts frei zugänglich.[14][15] Auch eine Berechnung des aktuellen Leistungsprofils der in Deutschland installierten Photovoltaik mit Visualisierung nach Postleitzahlgebieten ist bei einem Wechselrichterhersteller abrufbar.[16] Die vier Übertragungsnetzbetreiber in Deutschland setzen seit 2010/2011 für die Planung der Regelleistung unter anderem die Berechnungen großer Betreiber von Datenportalen zu Photovoltaikanlagen ein. Deren Berechnungen basieren jeweils auf Ertrags- und Leistungsdaten von etwa 10 % der installierten Anlagenleistung in Deutschland.

Quelle: Seite „Photovoltaik in Deutschland“. In: Wikipedia, Die freie Enzyklopädie. Bearbeitungsstand: 18. Februar 2021, 11:01 UTC. URL: https://de.wikipedia.org/w/index.php?title=Photovoltaik_in_Deutschland&oldid=208947658 (Abgerufen: 18. März 2021, 20:52 UTC)

Photovoltaik in Bulgarien

Fossile Energiequellen mit 29 % Kohle, 23 % Erdöl und 14 % Erdgas haben neben 22 % Kernenergie dominate Anteile an der Energieproduktion in Bulgarien (2018). Erneuerbare Energien und hier vor allem die Bioenergie (9 %), Wasserkraft (2 %) sowie Sonnen- und Windenergie (1 %) haben einen geringeren Anteil.[38] Kohlekraftwerke liefern rund 45 % der Elektronenergie. Das Kernkraftwerk Kosloduj produziert etwa 35 % des Stroms. Seit den 1980er Jahren ist mit dem Kernkraftwerk Belene der Ausbau der Kernkraft geplant, aber bisher nicht realisiert.

Ein Ausstieg aus der Kohleverstromung ist bisher nicht geplant.[39] Der Nationale Energie- und Klimaplan Bulgariens sieht bis 2030 die Steigerung der erneuerbaren Energien auf 25 % des Endenergieverbrauchs vor.[40] Die installierte Leistung mit Photovoltaik soll in den Jahren 2020 bis 2030 von 1042 MW auf 3216 MW steigen und damit soll der Anteil der Sonnenenergie an der Stromproduktion von 1,18 % auf 3,95 % mehr als verdreifacht werden. Die Nutzung von Bioenergie für die Stromproduktion soll in diesem Zeitraum von 80 MW auf 302 MW steigen. Der Anteil der Kernenergie soll etwa beibehalten werden. Die Energieeffizienz soll mindestens um 32,5 % verbessert werden.

Quelle: https://de.wikipedia.org/wiki/Energiewende_nach_Staaten#Bulgarien geladen am 18.03.2021

%d bloggers like this: